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Abstract

In mathematical folklore, the space of all measures over a measurable
space forms a monad on the category of measurable spaces. These notes
formalize this result and prove that the monad is not strong. Furthermore,
we show that the family of functions mapping measures to their (maximal)
product measure is not measurable.

1 Introduction
In categorical approaches for probability theory, Lawvere famously introduced a
probabilistic functor that maps a measurable space X to its space of probability
measure G(X) [5]. Giry proved that G has the structure of a monad in [4] and
therefore G is commonly known as the Giry monad. Giry defined the monad
on two categories – the category of measurable spaces Meas, and the category
of Polish spaces Pol, with the space of measures metrized by the Prokhorov
metric. In Meas, the σ-algebra of G is the least σ-algebra that makes the
family of evaluations {evE : GX → R}E∈ΣX

measurable, where

evE : P 7−→ P(E).

There are different variations of probability/measure monads since Giry’s dis-
covery and they extend/restrict to certain desirable spaces of measures such as
restricting the measures to be Radon or finite.

We are interested in the general setting that does not impose any constraints
on the measurable space or the set of measures, i.e. the space of all measures.
Note that the monad is known to exist in category theory folklore – these notes
simply formalize the result and explain why the monadM lacks desirable prop-
erties – namely the lack of monadic strength and a family of measurable func-
tions that maps measures to their (maximal) product measure.

Our motivation to investigate this monad stems from denotational semantics.
In denotational semantics, Moggi’s monadic metalanguage allows the encoding
of computational effects with a strong monad in a category with finite products
[6]. In particular, there are approaches that use a monad of (all) measures
to give semantics to statistical languages (e.g. [7]). However, the monad of
measures, while it is known to exist (e.g. see Section 2.3 of [1]), has never been
studied on its own/formalized. Also, as suggested in [8], the monad of measures
may not be strong (a necessary condition for the Moggi’s categorical semantics
to be well-defined).
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2 Preliminaries
Recall a measurable space X is a pair (|X|,ΣX) where |X| is a set and ΣX ⊆
P(X) is a σ-algebra, a set of subsets that contains ∅, and is closed under
complements and countable unions. Similarly, a topological space X is a pair
(|X|,O(X)) where |X| is a set and O(X) is a topology, a set of subsets that
contains ∅ and X, and is closed under arbitrary unions and finite intersections.

Definition 2.1 (Borel space). The Borel space of a topological space X is
a measurable space (|X|,B(X)) where B(X) is the least σ-algebra consisting
O(X).

Example 2.2. The Borel space of the standard topology over Rn is the mea-
surable space generated by the open n-balls of Rn.

Definition 2.3 (measurable function). Let X and Y be measurable spaces. A
(ΣX ,ΣY )-measurable function is a function f : X → Y satisfying f−1(E) ∈ ΣX
for all E ∈ ΣY .

Definition 2.4 (measure). Ameasure over the measurable spaceX is a function
µ : ΣX → R≥0

1 satisfying µ(∅) = 0 and µ(
⊎
i∈NEi) =

∑
i∈N µ(Ei) for a

sequence of pairwise disjoint measurable sets {Ei ∈ ΣX}i∈N.

Example 2.5. The (standard) Gaussian measure N (− | 0, 1) : ΣO(X) → R≥0

is a measure defined by

N (− | 0, 1) : U 7−→
∫
U

1√
2π

exp
(
−x

2

2

)
dx.

For instance, N (R+ | 0, 1) = 1/2, which reflects the fact that the probability of
drawing a positive number from the standard normal distribution is 1/2.

Definition 2.6 (measure kernel). Let X and Y be measurable spaces. A mea-
sure kernel between X and Y is a function k : X × ΣY → R≥0 such that for
every x ∈ X, k(x,−) is a measure, and for all E ∈ ΣY , k(−, E) is (ΣX ,B(R≥0))-
measurable. We write k : X  Y for the kernel k : X × ΣY → R≥0.

Example 2.7. The function (a, U) 7−→ N (U | a, 1) that maps a number a ∈ R
and U ∈ B(R) to a normal distribution with mean a and variance 1 is a measure
kernel from the Borel space of R to itself.

Remark 2.8. The category of measurable spaces Meas consists of measur-
able spaces as objects and measurable functions as morphisms. Meas is both
complete and cocomplete. In particular, this means Meas has all small prod-
ucts and consequently and (Meas,×,1) is a cartesian category, where 1 is the
singleton measurable space.

1In this article, we write R≥0 for the set (or when applicable, the measurable space) of
extended, non-negative reals, i.e. R≥0 = [0,∞]. We define x +∞ = ∞, x · ∞ = ∞ when
x 6= 0, and 0 · ∞ = 0 (standard in measure theory).
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3 The category of measure kernels
Throughout this article, we fix three measurable spaces X, Y and Z. We now
establish that the collection of measure kernels over all measurable spaces forms
a category (Proposition 3.2).

Lemma 3.1. Let µ : ΣX → R≥0 be a measure and k : X×ΣY → R≥0 a measure
kernel. Define a measure ν : ΣY → R≥0 by ν : E 7−→

∫
X
k(x,E)µ(dx). Then

for all (ΣX ,B(R≥0))-measurable f : Y → R≥0,∫
Y

f(y) ν(dy) =

∫
X

∫
Y

f(y) k(x, dy)µ(dx).

Proof. By the simple function approximation theorem, every f is of the form
f = limn→∞ fn for a sequence of real-valued measurable simple functions {fn =∑mn

i=1 cn,i1En,i}n∈N. Notice∫
Y

f(y) ν(dy) = lim
n→∞

mn∑
i=1

cn,i

∫
X

k(x,En,i)µ(dx) (see below)

= lim
n→∞

mn∑
i=1

cn,i

∫
X

∫
En,i

k(x,dy)µ(dx) (simple function)

=

∫
X

∫
Y

f(y) k(x, dy)µ(dz), (see below)

where the first and third equalities hold due to the monotone convergence the-
orem and linearity of integrals (which always holds for non-negative extended
real valued functions).

Proposition 3.2. The collection of measure kernels with measurable spaces as
objects and measure kernels as morphisms form category MeasKrn, with the
composition operator defined by

(l ◦ k)(x,E) =

∫
Y

l(y,E) k(x, dy)

for k : X  Y and l : Y  Z.

Proof. Notice the composition operator is well-defined – given k : X  Y ,
l : Y  Z and m : Z  A, the composition is associative:

(m ◦ (l ◦ k))(x,E) =

∫
Z

m(z, E) (l ◦ k)(x,dz)

=

∫
Y

∫
Z

m(z, E) l(y,dz) k(x,dy) (Lemma 3.1)

= ((m ◦ l) ◦ k)(x,E).

For idX : X  X, it is defined by the point-mass kernel idX(x,E) = 1E(x),
and (idY ◦ k)(x,E) =

∫
X
idY (y,E) k(x, dy) = k(x,E) = (k ◦ idX)(x,E).
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4 A measurable space of measures
The Giry monad G has two desirable properties: 1. the Kleisli category is the
category of probability kernels ProbKrn, and 2. it is a strong monad . We
show that the space of all measures satisfies the first condition (for MeasKrn)
(Theorem 4.12), but it is not a strong monad (Theorem 5.4).

Definition 4.1 (space of measures). Let X be a measurable space. The mea-
surable space of measures MX is a set MX consisting the set of measures over
X, endowed with the least σ-algebra ΣMX

that makes the family of evaluations
evE : µ 7→ µ(E) B(R≥0)-measurable for every E ∈ ΣX .

Definition 4.2 (pushforward). Let µ ∈MX and f : X → Y measurable. The
pushforward of f along µ is a measure f∗(µ) defined by f∗(µ) : E 7→ µ(f−1(E)).

Lemma 4.3. Let E ⊆ P(Y ) such that ΣY is the least σ-algebra containing E.
Then a function f : X → Y is (ΣX ,ΣY )-measurable if and only if for all E ∈ E,
f−1(E) ∈ ΣX .

Proof. From left to right, the statement follows from the definition of measura-
bility. From right to left, we proceed via the monotone class argument – suppose
for all E ∈ E , f−1(E) ∈ ΣX , we define a set of subsets Σ′Y by

Σ′Y := {E ∈ ΣY | f−1(E) ∈ ΣX}.

Notice Σ′Y is a σ-algebra – we know ∅, Y ∈ Σ′Y because f−1(∅) = ∅ ∈ ΣX
and f−1(Y ) = X ∈ ΣX . Also, Σ′Y is closed under complements and countable
unions – suppose E ∈ Σ′Y , then f−1(E) ∈ ΣX by definition, which implies
X \ f−1(E) = f−1(Y \ E) ∈ ΣX and consequently, Y \ E ∈ Σ′Y . For countable
union, suppose {Ei ∈ Σ′Y }i∈N, then f−1(Ei) ∈ ΣX for all i ∈ N, which implies⋃

i∈N
f−1(Ei) = f−1

(⋃
i∈N

Ei

)
∈ ΣX ,

and consequently,
⋃
i∈NEi ∈ Σ′Y . To show Σ′Y = ΣY , we prove Σ′Y ⊆ ΣY

and ΣY ⊆ Σ′Y . Notice Σ′Y ⊆ ΣY is true by definition. To show ΣY ⊆ Σ′Y ,
notice σ(E) = ΣY and E ⊆ Σ′Y by assumption, since Σ′Y is a σ-algebra and it
contains E , it contains the least σ-algebra generated by E , implying ΣY ⊆ Σ′Y
and Σ′Y = ΣY . This implies for all E ∈ ΣY , f−1(E) ∈ ΣX .

Lemma 4.4. A function f : X →M(Y ) is (ΣX ,ΣMY )-measurable if and only
if for all U ∈ B(R≥0) and E ∈ ΣY , we have {x ∈ X | f(x)(E) ∈ U} ∈ ΣX .

Proof. From the definition of generated σ-algebra, ΣMX is equivalently

ΣMX = σ{evE : MX → R≥0 | E ∈ ΣX , U ∈ R≥0}
= σ{{µ ∈MX | µ(E) ∈ U} | E ∈ ΣX , U ∈ R≥0}.

This means the family {µ ∈MX |µ(E) ∈ U}E∈ΣX ,U∈R≥0
generates ΣMX . Recall

that a function is measurable if and only if the pre-image of a generating class
of the codomain are measurable sets (proven via a monotone class argument),
this means f is (ΣX ,ΣMY )-measurable if and only if for all E ∈ ΣX and U ∈
B(R≥0), ΣX 3 f−1{µ ∈MX | µ(E) ∈ U} = {x ∈ X | f(x)(E) ∈ U}.
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Lemma 4.5. Let f : X → Y be (ΣX ,ΣY )-measurable. Then the pushforward
f∗ :MX →MY is (ΣMX ,ΣMY )-measurable.

Proof. By Lemma 4.4, it suffices to show {µ ∈ MX | f∗(µ)(E) ∈ U} ∈ ΣMX

for all E ∈ ΣY and U ∈ B(R≥0). Notice {µ ∈ MX | f∗(µ)(E) ∈ U} = {µ ∈
MX |µ(f−1(E)) ∈ U} and f−1(E) ∈ ΣX by assumption, which is a subset that
generates ΣMX by Definition 4.1.

Lemma 4.6 (functoriality). Let M : Meas → Meas be a map that sends X
toMX and f : X → Y to f∗ :MX →MY . ThenM is a functor.

Proof. By computation. Notice M(idX)(µ)(E) = µ(E) = idMX(µ)(E) and
M(g ◦ f)(µ)(E) = g∗(f∗(µ))(E) = (M(g) ◦M(f))(µ)(E).

Lemma 4.7. Let f : X → R≥0 be (ΣX ,B(R≥0))-measurable. Then the integra-
tion map If :MX → R≥0 defined below is (ΣMX ,B(R≥0))-measurable:

If : µ 7−→
∫
X

f dµ.

Proof. By the simple function approximation theorem, every measurable func-
tion f : X → R≥0 is the pointwise limit of a sequence of (ΣX ,B(R≥0))-
measurable simple functions {fn : X → R≥0}n∈N with fn =

∑mn

i=1 cn,i · 1Un,i
.

This implies

If (µ) = lim
n→∞

∫
X

mn∑
i=1

cn,i · 1Un,i dµ = lim
n→∞

mn∑
i=1

cn,i · evUn,i(µ),

where the first equality follows from the monotone convergence theorem. Since
the sum, multiplication, and pointwise limit of a B(R≥0)-measurable function
are measurable, If is measurable.

Proposition 4.8 (induced measure). Let f : X → R≥0 and µ ∈ MX. The
induced measure of µ and f is a measure f · µ ∈MX defined by

(f · µ) : E 7−→
∫
E

f dµ.

For all (ΣX ,B(R≥0))-measurable f : X → R≥0, the function (f · −) : MX →
MX is (ΣMX ,ΣMX)-measurable.

Proof. By Lemma 4.4, it suffices to show that for all E ∈ ΣX , (f ·−)(E) :MX →
R≥0 is measurable. Suppose E ∈ ΣX and U ∈ B(R≥0), notice (f · µ)(E) =
I1E ·f (µ), which is (ΣMX ,B(R≥0))-measurable by Lemma 4.7.

Lemma 4.9. The following maps δ : X → MX and ξ : M2X → MX are
measurable:

δ(x) : U 7−→ 1U (x) ξ(ν) : U 7−→
∫
MX

π(U)dν(π).
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Proof. By Lemma 4.4, δ is (ΣX ,ΣMX)-measurable if {x ∈ X | δ(x)(E) ∈ U} ∈
ΣX for all E ∈ ΣX and U ∈ B(R≥0). Consider the four cases of U ∈ B(R≥0):

{x ∈ X | δ(x)(E) ∈ U} =


{x ∈ X | δ(x)(E) /∈ {0, 1}} = ∅ if 0 /∈ U, 1 /∈ U
{x ∈ X | δ(x)(E) = 1} = E if 0 /∈ U, 1 ∈ U
{x ∈ X | δ(x)(E) = 0} = X \ E if 0 ∈ U, 1 /∈ U
{x ∈ X | δ(x)(E) ∈ {0, 1}} = X if 0 ∈ U, 1 ∈ U .

Since ∅, E,X \E and X are ΣX -measurable sets, δ is (ΣX ,ΣMX)-measurable.
For ξ :M2X →MX, notice ξ(ν)(U) = IevU

(ν). Since evU is (ΣMX ,B(R≥0))-
measurable by definition of the σ-algebra, IevU

is (ΣM2X ,B(R≥0))-measurable
by Lemma 4.7. This implies {ν ∈M2X |ξ(ν)(U) ∈ V } = {ν ∈M2X |IevU

(ν) ∈
V } ∈ ΣM2X . By Lemma 4.4, ξ is (ΣM2X ,ΣMX)-measurable.

Lemma 4.10. The maps δX : X →MX and ξX :M2X →MX are natural.

Proof. By diagram chasing on the naturality squares:

X
f //

δX
��

Y

δY
��

MX
f∗ //MY

M2X
f∗∗ //

ξX
��

M2Y

ξY
��

MX
f∗ //MY

The left square commutes because δY (f(x)) = f∗(δX)(x). The right square
commutes because

(ξY ◦ f∗∗)(ν)(E) =

∫
MX

evf−1(E) dν = (ξXν)(f−1(E)) = (f∗ ◦ ξX)(ν)(E),

where the first equality holds due to the change-of-variable formula.

Lemma 4.11. Let ν ∈ M2X and f : X → R≥0 be (ΣX ,B(R≥0))-measurable.
Then ∫

X

f d(ξXν) =

∫
MX

∫
X

f dµdν(µ).

Proof. By the simple function approximation theorem, every measurable f :
X → R≥0 is the pointwise limit of a sequence of (ΣX ,B(R≥0))-measurable
simple functions {fn : X → R≥0}n∈N with fn =

∑mn

i=1 ci · 1Ui . This implies∫
X

f d(ξXν) = lim
n→∞

∫
X

fn d(ξXν) (monotone convergence)

= lim
n→∞

mn∑
i=1

cn,i · (ξXν)(Un,i) (simple function)

= lim
n→∞

mn∑
i=1

cn,i

∫
MX

∫
Un,i

dµdν(µ) (definition of ξX)

= lim
n→∞

∫
MX

∫
X

mn∑
i=1

cn,i · 1Un,i dµ dν(µ) (linearity)

=

∫
MX

∫
X

f dµ dν(µ), (monotone convergence)

which completes the proof.
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Theorem 4.12 (existence). There is a monad M : Meas → Meas such
that the underlying set of M(X) is the set of measures over X and Kl(M) ∼=
MeasKrn.

Proof. To show that (M, ξ, δ) is a monad of measurable spaces, it suffices to
show that the following squares commute:

M3X
(ξX)∗ //

ξMX

��

M2X

ξX

��
M2X

ξX //MX

MX
δMX //

(δX)∗
��

idMX

$$

M2X

ξX

��
M2X

ξX //MX

For the associativity square, suppose ν ∈M3X and E ∈ ΣX , then

(ξX ◦ (ξX)∗)(ν)(E) =

∫
MX

evE d((ξX)∗ν)

=

∫
M2X

evE ◦ ξX dν (change of variable)

=

∫
M2X

∫
MX

evE(π)dµ(π)dν(µ)

=

∫
MX

evE d(ξMXν) (Lemma 4.11)

= (ξX ◦ ξMX)(ν)(E).

For the unitality square, suppose µ ∈MX and E ∈ ΣX , then

(ξX ◦ δMX)(µ)(E) = ξX(δMX(µ))(E)

=

∫
MX

evE dδMX(µ)(π)

= µ(E)

=

∫
X

evE ◦ δMX dµ (indicator function)

=

∫
MX

evE d(δMX)∗µ (change of variable)

= (ξX ◦ (δMX)∗)(µ)(E),

which completes the proof of existence. Next, to show that the Kleisli category
Kl(M) is trivially isomorphic to the category MeasKrn of measure kernels
via a bijection that sends f : X → MY to (x, U) 7→ f(x)(U) and a kernel
k : X  Y to x 7→ (U 7→ k(x, U)).

5 Non-measurability of strength
Recall a monad T is strong with respect to the cartesian category (C,×,1) if
there is a natural transformation {θX,Y : X × T (Y ) → T (X × Y )}X,Y ∈C such
that certain diagrams commute (omitted for space, see Definition 3.2 in [6]).
We demonstrate thatM is not strong in four steps:

1. assume there is a strength {θX,Y }X,Y ∈Meas (Definition 5.1),
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2. show that the definition is flawed – there are X,Y ∈Meas such that θX,Y
is not measurable (Proposition 5.2),

3. recall every monad has a canonical strength in Meas when it exists
(Proposition 5.3), and

4. show that any strength ofM must be equal to the flawed definition, hence
contradiction (Theorem 5.4).

Definition 5.1 (non-measurable strength). Let X and Y be measurable spaces
and px : Y → X × Y the measurable function y 7→ (x, y). The non-measurable
strength of X and Y is a function θX,Y : X ×MY →M(X × Y ) defined by

θX,Y : (x, µ) 7−→ (px)∗µ.

Proposition 5.2 (non-measurability). There exists X,Y ∈ Meas such that
θX,Y : X ×MY →M(X × Y ) is not (ΣX×MY ,ΣM(X×Y ))-measurable.

Proof. Let X,Y be the Borel measurable space over R. To show that θR,R
is not measurable. We show that θR,R is not (ΣR×MR,ΣM(R×R))-measurable
by showing there is a µ ∈ M(R) such that θR,R(−, µ) : R → M(R) is not
measurable. Consider a measure #V : B(R)→ R≥0 defined by

#V (U) =

{
|U ∩ V | if U ∩ V is finite
∞ if U ∩ V is infinite,

where V is a Borel-non-measurable set (e.g. the Vitali set). Notice the measure
is well-defined (it is the counting measure on R restricted to V ) and it satisfies
#V ({x}) = 1V (x). We proceed by showing θR,R(−,#V ) : R→M(R×R) is not
(B(R),ΣM(R×R))-measurable. By Lemma 4.4, it suffices to show that there is a
U ∈ B(R≥0) and E ∈ B(R)2 such that {x ∈ R | θX,Y (x,#V )(E) ∈ U} /∈ B(R).
Let U = {1} and E = {(x, x) | x ∈ R}. Then calculate

{x ∈ R | θX,Y (x,#V )(E) ∈ U} = {x ∈ R | (px)∗#V (E) = 1}
= {x ∈ R |#V (p−1

x ({(y, y) | y ∈ R})) = 1}
= {x ∈ R |#V ({x}) = 1}
= V /∈ B(R).

This implies θR,R(−,#V ) is not (B(R),ΣM(R×R))-measurable, which then im-
plies, θR,R is not (ΣR×MR,ΣM(R×R))-measurable.

Proposition 5.3 (Proposition 3.4, [6]). Let C be well-pointed category and
(T, ξ, δ, θ) a strong monad over C. Then {θX,Y }X,Y ∈C is the unique family of
morphisms such that the following diagram commutes for all x : 1 → X and
m : 1→ TY :

1
〈x ,m〉 //

m

��

X × TY

θX,Y

��
TY

T (〈x◦! , idY 〉) // T (X × Y )

Theorem 5.4 (non-strength). M is not strong with respect to the cartesian
category (Meas,×,1).
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Proof. Assume by contradiction that M is strong and has strength {θ′X,Y :
X ×MY → M(X × Y )}X,Y . Then by Proposition 5.3, we know by diagram
chasing that, for all x ∈ X, µ ∈MY and E ∈ ΣX×Y ,

θ′X,Y (x, µ)(E) =M(〈x ◦ !, idY 〉)(µ)(E)

= µ({y ∈ Y | (x, y) ∈ E})
= θX,Y (x, µ)(E).

However, by Proposition 5.2, θ′X,Y is not always measurable, a contradiction.

Remark 5.5. In categorical probability, a canonical way of generating Markov
categories is via the Kleisli category of a commutative, affine (meaning T (1) ∼=
1), symmetric monoidal monad [3]. SinceM is neither commutative nor affine
with respect to (Meas,×,1), it does not enjoy such property (unlike the Giry
monad).

6 Non-measurability of products
Recall that a product measure of µ ∈ MX and ν ∈ MY is a measure ρ ∈
M(X × Y ) satisfying ρ(E1 ×E2) = µ(E1)ν(E2) for all E1 ∈ ΣX and E2 ∈ ΣY .
When µ and ν are σ-finite, ρ is guaranteed to be unique via Carathéodory’s
extension theorem. For any arbitrary measures µ and ν, there is always a
maximal of such product measures µ ⊗max ν known as the maximal product
measure. The maximal product enjoys convenient properties such as the Fubini-
Tonelli theorem even for arbitrary measures (see 252G of [2]) and is defined by

(µ⊗max ν)(E) = inf
U∈ΣN

X ,V ∈ΣN
Y

{∑
i∈N

µ(Ui) · ν(Vi)
∣∣∣ E ⊆ ⋃

i∈N
Ui × Vi

}
,

where ΣN
X and ΣN

Y are the sets of sequences of ΣX/ΣY -measurable sets. As a
consequence of Proposition 5.2, we know there cannot be a family of measurable
functions mapping measures to their maximal product:

Lemma 6.1. There is no family of (ΣMX×MY ,ΣM(X×Y ))-measurable func-
tions {⊗max

X,Y :MX ×MY →M(X × Y )} such that ⊗max
X,Y (µ, ν) is the maximal

product measure.

Proof. Notice θX,Y (x, µ) maps (x, µ) to the maximal product of δX(x) and µ:

(δX(x)⊗max µ)(E) = inf
U∈ΣN

X ,V ∈ΣN
Y

{∑
i∈N

δX(x)(Ui) · µ(Vi)
∣∣∣ E ⊆ ⋃

i∈N
Ui × Vi

}
= inf
V ∈ΣN

Y

{µ(V ) | Ex ⊆ V }

= µ(Ex)

= θX,Y (x,E).

Suppose, by contradiction, the family of functions exists. Then the following
diagram commutes and θX,Y is measurable for all X,Y ∈Meas:

X ×MY
δX×idMY //

θX,Y ((

MX ×MY

⊗max
X,Y

��
M(X × Y )
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which contradicts Proposition 5.2.

Proposition 6.2 (non-measurability of product measures). There is no family
of (ΣMX×MY ,ΣM(X×Y ))-measurable functions {⊗X,Y :MX×MY →M(X×
Y )} such that µ⊗X,Y ν is a product measure for all µ ∈MX and ν ∈MY .

Proof. Suppose the family of functions {⊗X,Y }X,Y ∈Meas exists and X is a mea-
surable space that contains singleton measurable sets, i.e. {x} ∈ ΣX for all
x ∈ X. Then for any x ∈ X and ρ ∈M(X × Y ), the following inequalities hold
if ρ is a product measure of δX(x) and ν:

ρ(E) ≤ ρ(X × {y ∈ Y | (x, y) ∈ E}) = δX(x)(X) · ν(Ex) = θX,Y (x,E)

ρ(E) ≥ ρ({x} × {y ∈ Y | (x, y) ∈ E}) = δX(x)({x}) · ν(Ex) = θX,Y (x,E).

This means ρ = θX,Y for any X that contain singletons. The problem is then
reduced to the existence of a family of maximal product measures, and it does
not exist by Lemma 6.1.
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